PHYSICAL REVIEW E VOLUME 54, NUMBER 1 JULY 1996

Large-scale statistics of the Kuramoto-Sivashinsky equation: A wavelet-based approach
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We show that the statistical properties of the large scales of the Kuramoto-Sivashinsky equation in the
extended system limit can be understood in terms of the dynamical behavior of the same equation in a small
finite domain. Our method relies on the description of the solutions of this equation in terms of wavelets, and
allows us to model the energy transfer between small and large scales. We show that the effective equation
obtained in this way can be consistently approximated by a forced Burgers equation only for scales far from the
cutoff between small and large wavelengtf81063-651X96)01407-9

PACS numbgs): 05.40:+j, 87.10:+e, 07.05-t, 72.704+m

[. INTRODUCTION theory based on the Dyson-Wild equations for the Green’s
function and the correlation function. The main result of this

In recent years considerable effort has been devoted to thteeory is the computation of the exponentsuch that the
study of effective models for deterministic dynamical sys-steady-state correlations of the discrete Fourier components
tems with many degrees of freedom. One of the goals oh(q,t), g=2nn/L, |[n|=1,... L/2 of the height function
these efforts is to describe statistical properties of the system(x, t) =[pu(s,t)ds read
through those of a coarse-grained model corresponding to
the large scale dynamics. In such an analysis, one realizes - - A
that the net effect of the small scales is twofdidthe renor- (h(q,t)h(—q,s))= L—ng(qz|t— sl), 2
malization of the coupling terms ar(d) the appearance of

an additive stochastic noise. The key issue in any approacfherea is a constant, ang(x) is a universal function such
to this problem is how to deal properly with the statistics Ofthatg(O)zl and lim_...g(x)=0. As shown in Ref[2], one

the small scales as well as their coupling to the large scalegs 1 integrate Eq.(1) for rather large values of
In this paper, we will focus on the Kuramoto-Sivashinsky L(~4000) in order to verify the scaling relatidg).

(KS) [1] equation A completely different way of thinking has been initiated
by Zaleski[8] and later pursued by Hayot, Jayaprakash, and
co-workerd 3] in one and two dimensions. These authors use
a coarse-graining procedure to integrate out short wavelength
degrees of freedonk>A, for a suitable cutoffA. If
u(k,t) denotes the Fourier transform ofx,t), then Eq.(1)

may be rewritten as

AU+ L~ 2Uyy+ L™ MUyt L tuu,=0 (1)

on the one-dimensiondllD) periodic domain[0,1]. This
equation is particularly interesting in view of the recent at-
tention [2,3] devoted to the connection between its long
wavelength properties and the KPZ equafidhfor interface
growth. Herel is the single control parameter of the system, K2

and we will be concerned with the giene L—, which ui(k,t)=— vdm? —u(k,t) + g(k,t)+ f(k,t), 3
corresponds to the extended system limit. Several papers L

have addressed the study of the long wavelength propertiesh
of this equation. Yakhdt5] used a perturbative renormaliza- where

tion group(RNG) [5,6] approach, and suggested that the KS ok

equation can be described at long wavelengths by the sto- g(k,t)=—i—— Z u(gq,tiutk—a,t) (4
chastic Burgers equation L jq<alk-ql<x

Au—vL " 2u+ L luu,= g(x,t), »>0, is the Fourier transform of the nonlinear term, involving only
large-scale components. The value of the renormalized vis-
where7(x,t) is the stochastic forcing. Although this method C€OSity » is determined in such a way that the “stochastic”
is constructive in the sense that it provides an effective exforcing
pression for the renormalized viscosity the introduction of

unknown parameters in the description of the small scales fkt)=| vt = — 4_772) 4W2k2u(k 1)
makes the effective computation efunclear. ’ L2 L?) L? ’
More recently, Procaccia and co-worké@ studied the
existence of scale-invariant solutions of the KS and KPZ —j 2_7Tk u(g.u(k—g,t)  (5)
equations ind dimensions using a renormalized perturbation L |g=a o;k—q\EA ’ ’
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involving the coupling between at least one small-scale Il. WAVELET PROJECTIONS OF THE KS EQUATION
mode and any other mode, is uncorrelated with the large-

scale modes for time differences longer than ¢hleortest
characteristic time scale of the large-scates

Our approach is based on the use of a particular orthogo-
nal waveletbasis[13]. The construction of this basis relies
on the existence of a functio#f (x), which completely de-

(7 fines its elements, such that the infinite set
T fo f(k,hu(—k,t—7)dt—0 as T—e, {¥,j=01,... k=0,1,...,2—1} forms a basis for the
zero mean, finite energy periodic functions pi1]. The
™, |k<A. (6) relation betweenV (x) andW¥; (x) is given by

In other words, the assumption that only the linear term is o _

renormalized yields a closed expression foin terms of W (x)=21"2 2 V(2! (x+n)—k). (7)
three point correlation functions mixing short and long o

WaVElength modes. It then remains to check that the abOV?ypica_”y’ \Il(x) is a rapid|y(exp0nentia"y decreasing func-
definition of » is independent of the parameteks k, and  tion [14], which can effectively be considered as compactly
the time delayr, and that the “stochastic forcingt(k,t)  supported for numerical purposes. In this paper, we use a
has the expected correlation properties. Although thigifth degree spling15] for ¥ (x), although this fact will not

method works well, it is not constructive, in the sense thalirectly enter our reasoning below. Then one can easily see
one effectively needs to integrate the full KS equation infrom relation(7) that

order to compute these three point correlations, and eventu- _ _ _

ally v. W (x)=2V"2W (2)x—k) + O(exp( — 2//S)) ()
The main motivation of the present paper was to model . )

the energy transfer between large and small scales in the K@OV'ded‘I’(X)~eXp(—IXI/S) asx—oo. In physical terms, the

equation, in order to gain some insight into the mechanism@’avelet basis is built of rescaled and translated versions of

responsible for the renormalization of the viscosity. Moreth®¥ (X) function so that, for each scajewe obtain a set of
functions, centered at the pointsk+0.5)27/,

precisely, we show that the two and three point correlationz]

functions mixing both large and small scales can be numerik=0.1, - - - ,2—1[13,15, and sufficiently rapidly decaying
at their supports are concentrated in intervals of length

cally computed from the response of a low dimensional dy-th - : g ;
namical system, namely, the KS equation for small values of 2 - In the Fourier domain, a wavelet basis corresponds to
L, to an external forcing. Our procedure does not yield g 'ogarithmic partition so that the support of any of the 2
closed analytic form for the coarse-grained equations, but iFourier transformsb; ,(q) is centered around the wave vec-
provides a completely explicit recipe free of unknown pa-tor do2’', whereqy~1 corresponds to the maximum of the
rameters, and easily amenable to numerical computation. Imodulus of the Fourier transfor¥(x). The decay in the
the process ofre)writing this paper, we learned of a similar wave number is algebra[d5].
paper by C. Chow and T. HW#®], leading to the same result ~ As usual, we represent the solution of the KS equation in
as ours, but using completely different methods, and, in outhis basis via
opinion, requiring stronger assumptions about the behavior
of small scales. We yviII comment on the approach|9f u(x,t)=z a, ()W ,(x), 9)
throughout the following. We also refer the reader to Refs. a
[10-12 for other approaches similar to ours. . ) ) i
Another interesting question, which to the best of ourWherea denotes the multi-index (k)<- We will also intro-
knowledge has not been addressed in the context of the k@Uce an arbitrary scalg such thaf{a, =a «,j<joj repre-
equation, concerns the behavior of the coarse-grained equgents the large-scale component of the solution, and
tion for the scales close to the arbitrary cutoff separating@, =a;.J>]o} represents the small-scale componghe
small from large scales. One expects that approximationgole of j, is completely analogous to that of the cutoff wave
relying on differences in time scales will break down in thenumberA defined viaA ~2'oq,). Specific values of, will
vicinity of this boundary. This point will be considered in the be fixed later.
context of our particular modeling of the small-scale behav- Several observations suggest that, for the present applica-
ior. tion, wavelets are superior to standard orthogonal bases
The rest of the paper is organized as follows. In Sec. ll(such as Fourier modgsin particular:(i) due to the expo-
we describe the main analytic tool of our approach, namelynential decrease in the scales between wavelet “genera-
the use of an orthogonal wavelet basis, and we study thtons” inherent in the wavelet basfer equations such as the
structure of the equations generated by projecting the K¥S equation in the regions of the spectrum we are interested
equation onto such a basis. In Sec. Ill, we explain our modeln, the characteristic time scale of all the’s is the same
for the coupling between small and large scales and we ddor each fixed;j, but differs by an order of magnitude from
scribe and compare the results of three numerical simulathat of the neighboring, . scales. An analogous partition
tions: (1) of the full KS equation on a “long” domain of Fourier modes ™ into shells of the form
L=400; (2) of eight independent “short” systems kj=<|k|<kj*' has been systematically used in RNG calcu-
(L=400/8=50) forced by the large scales of the full simu- lations [5,6,16, but while in the Fourier case there is no
lation; and(3), of a closed system of coupled large and in-clear gap between time correlations of modes in neighboring
dependent small-scale systems. Section IV contains conclughells, for wavelets, all the coefficients at the same scale
ing remarks. have the same time correlation
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and neighboring scales differ by a factor of 2. This point is In,z.|<C 2\]—]'\/2(exp—|a—ﬁ\/s

crucial when invoking any kind of multiple time scale tech- apyl =2

nique, as is the case in the RNG methd@id) Due to the +exp (I la=BDIS)oli=i"l12 gxpla= IS
particular structure of the wavelet basis, it will be shown

below that the equations governing the time evolution of the +exp (1lemais),

wavelet coefficients, for values ofj>j, can be decom- hereC. andC W lude that. f
posed into a set of independent replicas of the equation‘é’ eret; an lzare two cgnfstants. icéo_r}((): ul e that, Sr an
computed from the wavelet projection of the KS equation for2PPropriate value ofo and for [a—p|=27°, 1,5 can be

a smaller value of the parameter All the results in this nedlected, and that we may make analogous approximations

paper rely strongly on this observation, which we now eX_for Ny, Using the fact that KS is trqnslationally invariant,
plain we can replace each of the moments in @8¢) by the analo-

Let us write Eq.(1) in terms of thea, variables gous quantity for which all indices belong to the saBe
* box. For instance,
(an(ag(t+ 1)) =(a,-a(t)ag-s(t+1)), (13

(1 -2 -4
where | 5= [ oW () (—L ™ “dxx— L™ "0uod W p(X)dX, etC.,  \yhere (v—A),(8—A) e B, andA is the translation param-
- .-, andsummation over repeated indices is implied. Weeter. Finally, using the approximate relati8), it is easy to
introduce the splitting between larga) and small &) optain the scaling relations between the coupling coefficients

aga,, (10

aBy

scales, and rewrite the evolution equation of the small scalels and n for Eq. (1) with parameterL and T
as 1 oo+ 1317
~> >> >> > >>> > > > —_ .
a,=[l,s tal 5z (]ag+n,z, aza, +f, (1), (11 log(L) =14 5 (L)[1+O(exp721mm/s)]
@ ®1P1 !
where 81”2 (t)=n_;.~as+n_>,a is a slowly varying .
ap aBy %y ayf Ty (i i _ 2min
perturbation  of the linear term, and f_(t) Nagy(L)=270072n, 5 (L)[1+O(exp 2™9)],
t=na>ﬁ<7<a§aj+la>ﬁ<a§ is a slowly varying additive forcing (14
erm. . . . . .
. . . here =(j,K),a1=(j1,kq), =j—(jot+1), k¢=
In this section, we consider the small-scales equatidhn \év’(jfﬁl)kc:ztc(] ) a;néjjl | l—)mirjl(lj jl, j,(,;o Us?ing thlese
) LRI min— o))

without the forcing termssl ;" and f, i.e., in isolation
from the large scales. The key observation is that the equ
tions governing the statistical properties of thg variables
satisfying these unforced equatiaidd) are identical to those
of the KS equation with parameter=L2"Uo™1) up to re-
scaling and small corrections.

Namely, if we define the “boxes” B,
k=0, ...,20"1—1, specified by the sets of indice§,K’)
with j=jo+1 and|k2 U0t D—k’27J|<2 0o we can
decouple thea, equations into 2% independent sets of
equations, each one including only varialkéesbelonging to
the sameB, box, in a manner that preserves the statistics bu . )
not necesgarily the dynamics. Thpe reason for this is easily " if the forcmg term§l'>> and_f> are small. In Fhe next
seen from inspection of the moment equations associate ction we investigate this question using numerical simula-
with the unforced equatioill) (f;=4,,=0). For ex- tions
ample, consider the equations of motion for the second mo-
ment

relations, one can easily see that the rescaled vari-
aeibles’éalzz('f)*l)’zaa approximately satisfy the moment

equations(12) arising from Eq.(1) for length parametek.
Assembling all these observations, one gets the relation
claimed above, between the equation governing the statisti-
cal properties of solutions d@fl) with parameteL and those

of (11) with no forcing. However, close equations do not in
general imply close solutions, even in a statistical sense.
Consequently, we do not have aaypriori reason to believe
that the statistical properties of the small scales of @g.
Yvith parametet. will be close to those with parametér,

Ill. COUPLING SMALL AND LARGE SCALES

In this section, we investigate by means of numerical
simulations how the approximations performed in the pre-
ceding section on the unforced small-scale equatidns,

- e o - survive when one includes the slow forcing terms coming
(@ (Ong,s &, (t+nas (t+1), from the interaction with the large scales. Our intuition is
(12) that these approximations can hold provided the amplitude of
the forcing is small and its evolution well separated in time
where(-) is the time average. Let us denote Jay— 8| the  from the small scales. The same idea, rephrased in the con-
distance|k2’j—k’2’j'| (modulo 1, where a=(j,k) and text of the “integrated” KS equation for the function
B=(j',k"). Using the estimateW(x)~exp(|x/S) as h(x,t)=fpu(x’,t)dx’, constitutes the main ansatz of the
x—, it is straightforward to obtain the following inequali- work by Chow and Hw49]. As we noted above, the second
ties: condition is automatically satisfied by wavelet decomposi-
tions of the KSE in the region of the spectrum we are inter-
||a'B|gclz‘i*j"/Z(exp*‘a*3|/s+ exp%lfla*ﬁ\)/s) ested in. On the other hand, the amplitude of the forcing is
essentially determined by the value of the cutiff As al-
and ready observed in previous works, the energy of a typical

d
g2 (Dagtn)=(ag ()l ay (t+7)
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<< A<, <>< 4> <
- T Whe<rg> >5|gﬁ (t<)>—n>aﬁy a,+n,, s a, a.nd (1)

: ] =Nz, aga, +1_ zsaz . Inthe standard Fourier-based RNG
procedurd 6,16, the termf > gives rise to the correction of
the linear term(renormalization of the viscosity whereas
3 : ] 81,5 is either neglected, or showH6] to correspond to a
e I 3 cubic nonlinearity only significant for values ¢fclose to

E 3 Fly j=4and 1 ] . . .
2 E il ok jo- The common procedure used to reach these results is, in
A I I -2 PP S S T DT I one form or another, the slaving principle. For instance, one
2 4 ; 6 8 -0.1-005 0 005 0.1 performs a “short time” average dfL5) in order to replace
a; .
107! e e a, by (a;)({a"}) and aja; by some function
(@) ] (aja;) ({a=}). Different versions of the RNG procedure in
10°%
107° &

Ll

i XNM“\\ 1 fact give different analytic expressions for the averaged
7 g terms(a,) ({a~}) and(aja;) ({a~}).
: L] ~ Following our initial picture of the small scales as a set of
‘ 2lo*1 independent boxes slowly driven by the large-scale
J=6and3 , ; variables, we wish to check its validity with regard to the
e T statistics of the forcing termsl;; and f; . With this in
-02 -01 0 01 02 mind, we performed three kinds of simulations. Simulation 1
Bk is just the integration of the full KS equation far=400,
using a pseudospectral code, with Adams-Bashforth time
FIG. 1. (a) Time average_oai as afunction of: (A), L= 400, stepping for the nonlinear term, and a Crank-Nicholson
(O) L=50, divided by 820", (b), (c), and(d) present respec- scheme for the linear term. Simulation 2 is integration in
tively, the pdf's P(a; -, of the wavelet coefficients; o for time of 21'o+1(:8) independenKS equations withL =50,
scales:j:4, 5, and 6 computed from the KS equation with each forced by the set of |arge_sca|"egq 0) Components

L =400 (solid line), andj=1, 2, and 3 forL=50 (dashed ling a“ computed from simulation 1. Namely, for

rescaled by a factor &2. k=0,...,20"1—1, we integrate(using a fourth order

Runge-Kutta methgdthe equations
solution of the KS equation is mainly concentrated around

Lol

the wavelength 2/2/L, corresponding to the most unstable - - S s (i 1)/2 N U
Fourier mode of the equation linearized about the trivial soda ™ 2 | p(L)ag+2 o ¥ > 2 Ny (L1358,
lution. In wavelet terms, this corresponds to the value of <% % %y <B

jm such that 2Um*D<27\2/L<27IM, Thus we expect .y . _

that the above scaling relations between statistical quantities ~ + _ > . [Nagy, (L +ng s (L)]a,

obtained for two different values df will hold even in the ag B2,

presence of the slow forcing tern&~~ andf~, provided

that jo<<jy . In order to illustrate this point, we present in + > N,z (L)aga; . (16)
Fig. 1 the second moments and the probability distribution aga;

functions of the wavelet coefficients  for several scales
j and for the two parameter valueés=50 andL =400 (that [Here we momentarily drop the implicit summation conven-
is, jw=~5 andj,=2), with the appropriate rescaling. The tion, and make use of the approximate scaling relatiah.]
most energetic scalg=6 as well as the second moments of The comparison between simulations 1 and 2 will substanti-
these distributions are in a rather good agreement. Thigte the main point of this paper, namely, that the statistics of
means thati) the scaling relations obtained in Sec. Il for the couplings between small and large scales in @g.can be
unforced equations do imply approximate scaling relationgomputed from the interaction with an assembly of low di-
for the statistical properties of the solutions for length valuegnensional systems. Simulation 3 will be described at the end
L andL, and(ii) the forcing is weak enough to preserve the Of this section.

relations obtained for the unforced equations. Notice how- We considered the statistics of the tja,(t)as(t—7)]

ever that the same comparison wj 3 would yield a very ~ and threga,(t)as(t)a,(t— )] point products. These enter
poor agreement. The reason is that the asymptotic dynamidgr instance in the energy budget equatiar=Q)

for the KS equation with. =25 is a fixed poin{cf. [1]): this

system is simply too “short” to exhibit sufficiently rich dy- daj2

namicsin isolation (but see below as well as Sec.)I\We T op Aa8p TNosy ajagay +ol rajag+ia;
conclude that the choice ¢f is actually dictated by at least

two conditions: (i) the order of magnitude of the forcing =l pasap+T, “+T,7+T.7, 17
termss~~ andf~, and(ii) the (asymptotig dynamics of the

KS equa’[ion for the parameter value and have been studied in the RNG approach to the Navier-

Let us now focus on the large-scale equations of motionStokes equationgl6,17. The time average of the transfer
T~~ is shown[16,17 to correspond to a negative linear

a

el e correction to thd ,,(a2) term. As can be seen in Fig. 2, the
a,=[lgtdl g (V]ag+n,gaga, +f.(1), (159  averagdT.”) is negative, although very frequently the “in-
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FIG. 2. (a) Probability distribution function of the transfer
T.~ term forj =0, corresponding to the integration of the full KS
equation(solid line), simulation 2(long-dashed ling and simula-
tion 3 (short-dashed ling for jo=2. (b) Same as in(@ for the
j=1 transferT_~ .

stantaneous” transfer is actually positive. Simulations 1 andbly well data obtained from the full simulation, although the
2 seem to agree fairly well for any<j,. The same remark 'at€ of convergence does not seem to be the same for both

is also valid for the other values af, as well as for the Simulations. o
“cross” transfer termTS~ . The good agreement between In Ref. [9], Chow and Hwa used a rather sophisticated

the two statistics stresses the fact that all the informatiormethOOI to measure the response function of the drift rate,

neelde? to compute the interacti(())n between small and Iarq‘%@'%?s’égsﬁsr '}'ehrgg/lr;%lggyég?:iléyngtlgﬁfinﬂt]i;g) ;g?gr'%n to
scales(up to a good approximatigris actually encoded in ; : S ?
the dynamics of the individuas, boxes. to the solution of the integrated KS equation in a periodic

Delayed two-point correlations-&0) are also of interest small box. The spatial form of the forcing is critical in order
They enter, for instance, in the analogue of the Zalesll<i’st° obtain the correct value of the response function, and is

procedurd 3,8] written in wavelet basis. Namely, the correc- thoroughly dlscyssed in their paper. One shouk_j notice that
tion to the viscositysy, and the stochastic forcing> are our way of obtaining the correction to the viscosity is analo-
o a

defined by the followina equation: gous to theirs, excepting the fact that the external excitation
y 9 €q ' of the small periodic boxes is actually given by the real forc-

FIG. 3. v,(7) computed from the data obtained with both simu-
lations 1 ©) and 2 Q).

< << << < << << g< ing computed from the full simulation. This is probably not
80 =llap *0lap (V]85 T Nup, agay +1, (1 imgportanpt for the scales much larger than thz cutoffyscale
= a<ﬁ< + 5va5aﬁ)a§ + nj;fa;aj +FS, (18 o, butprobably critical for values gf~j,. Notice also that
our procedure yields unambiguously the spatial profile of the
where forcing, simply given by thesl; andf terms.
It is interesting to note that similar results can be obtained
Fo=—6v.a,+68l 5 (hag+f; (190 for the parameter valug,=3, which corresponds th=25

for each boxB,.. In terms of dynamical systems, in this case
(note that no summation is assumed in éhga;, term. The  the asymptotic behavior of the KS equation for 25 is
closure equation is given by the condition tH&}(t) and  much simpler than fok =50 (the global attractor is a trimo-
u; (t—7) are uncorrelated for>0. This yields the follow- dal steady state: s¢&] for detailg. Thus, one cannot com-

ing condition: pare the pdf's of wavelet coefficients as we did in Fig. 1,
although it should be noted that for such a valud_ofthe

ov,= lim dv,(7) transientdynamics of the KS equation can be rather compli-

T cated, and pdf's computed on a time interval where only the

< << transients are present are actually not very different from
= lim (Bu(t= Do (D F g (t)aﬁ(t)]). (200  those in Fig. 1. Then, the forcing from the large scales per-
oo (au(t—7)a,(t)) manently keeps the small scales away from the trimodal
fixed point in such a manner that the energy transfer statistics
Notice thatdv, is a correction of the diagonal matrix ele- are those of simulation 1. Hence we conclude thatstags-
ments ofl .z, and that a more general model for the correc-tical properties of thdorcedKS equation foi. =25 are suf-

tion to the viscosity could be given by ficient to describe those of the same equation for larger val-
_ ues ofL. However, if one tries to increase the valuej gtto
a,=(l,5 +oveplag+n,z"aza ;+F,.  (21) 4, thatis, to reduce th=12.5 for theB, boxes, the dynam-

ics of the resulting short system are insufficiently rich to
Due to the lack of precision in the numerical estimation ofreproduce those for larger valueslofthe solutions quickly
Sv, (see Fig. 3 it is difficult to decide which of the above converge to traveling waves with not enough long tran-
models is the bestin the sense that the limit as—» is sient3. Although this choice still satisfies the condition
reached faster and we will stick to the simplest, namely, jo,<jm~5, the results of simulation 2 are very different from
Eq.(18). Figure 3 representsv(7), computed from the data those of 1.
obtained from both simulations 1 and 2. One can see that, in The conclusion of the two simulations presented so far is
the asymptotic range> 100, our model reproduces reason- clear: forcing the set of 12*1 replicas of the KS equation
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with the right statistics of the large scales induces the correatorrect as soon as the small scales are forced with the right
energy transfer between small and large scales. We now wisHiatistics. On the other hand, simulation 3 shows that these
to investigate the effective equation suggested by our apmissing interactions can significantly change the statistics of
proach. To do this, we couple the small-scales equatib®)s the large scales close to the cutoff scpje

with the following set of equations for the large scales:
IV. CONCLUSION

35:2 |§ﬁ<(|_)a§+ E njEf(L)agaj n this paper, we have used orthogonal wavelet projec-
a- aza; tions to study models for the transfer of energy between
7 small and large scales in the 1D periodic Kuramoto-
Sivashinsky equation. We first showed that the structure of
<<> <>< <A>
+ <2> [Nagy (L) +Ng,s (L)]agay the small-scale equations is such that, when neglecting cou-
aga, plings with the large scales, they can be approximated in a

natural way by a set of/i2"1 replicas of the wavelet projec-

+ > nj;f(L)aEajnLE I.5(L)ag. (22)  tion of Eq.(1) for length parametek =2 Uo* DL, This ap-

aza; a; proximation is intended only to preserve the statistics of the

solutions, and not the “instantaneous” dynamics.

Numerical simulations using the coupled set of H3$) and By means of numerical simulations, we then checked that
(22) will be called simulation 3 hereafter. We used the sameorcing this set of %! independent subsystems with the
time stepping as in simulation 2, and also tried a slightlylarge scales computed from the full simulation of Ej)
different version of simulation 3, where we computed thedoes actually reasonably reproduce the energy transfer be-
evolution of the “top™ coefficienta;_; .,k of each boxB,  tween large and small scales, provided the phase space of
using Eq.(22) instead of Eq.(16). This version seems to €ach of the uncoupled box& is large enough. However,
yield better results than the former, and will actually be usegvhen the large scales are generated autonomously by a
in the sequel. This improvement can be easily understood, a§!0sed” model coupled to the independent subsystems, the
the error in the approximate scaling relatiaqid) decreases agreement is satisfactory only for scales separated from the

asj increases fromjg+ 1. cutoff scalejo. _
The ensemble formed by Egs. (16) for The statistical picture suggested by our study is that of an
k=0,1,...,20"1—1 and(22) constitutes a completely au- assembly of identical short length subsystems, slowly driven

tonomous model for the statistics of the KS equatiosither Vi@ interactions with the large scales. A more detailed study

fiting parameters other than the cutoff scijenor external  [18] of the dynamics of the KS equation for values of
forcing terms are neededThe comparisor(Fig. 2 of the L~4QO aptually suggests the need for at ]east two kmds of
undelayed three-point correlation functions with those ofSolutions in these subsystems, corresponding, respectively, to
simulations 1 and 2 shows clearly that, as one could expect/aveling waves and homoclinic cycles, in order to obtain
the agreement deteriorates jaapproacheg,. The pdf's of rfeasonable tracking of the solutions of the full equation. Spa-
the transfer term are close fpr=0, deviate for strongbut  tiotemporal representations of the solutions of the50 KS
rare values of the transfer for=1, and differ by a factor equation strongly suggest_that the latter does indeed exhibit
~4 for j=2 (not shown in Fig. 2 Such a disagreement (hese two types of dynamics.

should be expected: as a matter of fact, the periodization ACKNOWLEDGMENTS
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