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We show that the statistical properties of the large scales of the Kuramoto-Sivashinsky equation in the
extended system limit can be understood in terms of the dynamical behavior of the same equation in a small
finite domain. Our method relies on the description of the solutions of this equation in terms of wavelets, and
allows us to model the energy transfer between small and large scales. We show that the effective equation
obtained in this way can be consistently approximated by a forced Burgers equation only for scales far from the
cutoff between small and large wavelengths.@S1063-651X~96!01407-9#
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I. INTRODUCTION

In recent years considerable effort has been devoted to the
study of effective models for deterministic dynamical sys-
tems with many degrees of freedom. One of the goals of
these efforts is to describe statistical properties of the system
through those of a coarse-grained model corresponding to
the large scale dynamics. In such an analysis, one realizes
that the net effect of the small scales is twofold:~i! the renor-
malization of the coupling terms and~ii ! the appearance of
an additive stochastic noise. The key issue in any approach
to this problem is how to deal properly with the statistics of
the small scales as well as their coupling to the large scales.
In this paper, we will focus on the Kuramoto-Sivashinsky
~KS! @1# equation

] tu1L22uxx1L24uxxxx1L21uux50 ~1!

on the one-dimensional~1D! periodic domain@0,1#. This
equation is particularly interesting in view of the recent at-
tention @2,3# devoted to the connection between its long
wavelength properties and the KPZ equation@4# for interface
growth. Here,L is the single control parameter of the system,
and we will be concerned with the re´gime L→`, which
corresponds to the extended system limit. Several papers
have addressed the study of the long wavelength properties
of this equation. Yakhot@5# used a perturbative renormaliza-
tion group~RNG! @5,6# approach, and suggested that the KS
equation can be described at long wavelengths by the sto-
chastic Burgers equation

] tu2nL22uxx1L21uux5h~x,t !, n.0,

whereh(x,t) is the stochastic forcing. Although this method
is constructive in the sense that it provides an effective ex-
pression for the renormalized viscosityn, the introduction of
unknown parameters in the description of the small scales
makes the effective computation ofn unclear.

More recently, Procaccia and co-workers@7# studied the
existence of scale-invariant solutions of the KS and KPZ
equations ind dimensions using a renormalized perturbation

theory based on the Dyson-Wild equations for the Green’s
function and the correlation function. The main result of this
theory is the computation of the exponentz such that the
steady-state correlations of the discrete Fourier components
ĥ(q,t), q52pn/L, unu51, . . . ,L/2 of the height function
h(x,t)5*0

xu(s,t)ds read

^ĥ~q,t !ĥ~2q,s!&5
A

Lq2
g~qzut2su!, ~2!

whereA is a constant, andg(x) is a universal function such
thatg(0)51 and limx→`g(x)50. As shown in Ref.@2#, one
has to integrate Eq.~1! for rather large values of
L(;4000) in order to verify the scaling relation~2!.

A completely different way of thinking has been initiated
by Zaleski@8# and later pursued by Hayot, Jayaprakash, and
co-workers@3# in one and two dimensions. These authors use
a coarse-graining procedure to integrate out short wavelength
degrees of freedomk.L, for a suitable cutoffL. If
u(k,t) denotes the Fourier transform ofu(x,t), then Eq.~1!
may be rewritten as

ut~k,t !52n4p2
k2

L2
u~k,t !1g~k,t !1 f ~k,t !, ~3!

where

g~k,t !52 i
2pk

L (
uqu,L,uk2qu,l

u~q,t !u~k2q,t ! ~4!

is the Fourier transform of the nonlinear term, involving only
large-scale components. The value of the renormalized vis-
cosity n is determined in such a way that the ‘‘stochastic’’
forcing

f ~k,t !5S n1
1

L2
2
4p2

L2 D 4p2k2

L2
u~k,t !

2 i
2pk

L (
uqu>L or uk2qu>L

u~q,t !u~k2q,t ! ~5!
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involving the coupling between at least one small-scale
mode and any other mode, is uncorrelated with the large-
scale modes for time differences longer than the~shortest!
characteristic time scale of the large-scalest l

T21E
0

T

f ~k,t !u~2k,t2t!dt→0 as T→`,

t.t l , uku,L. ~6!

In other words, the assumption that only the linear term is
renormalized yields a closed expression forn in terms of
three point correlation functions mixing short and long
wavelength modes. It then remains to check that the above
definition of n is independent of the parametersL, k, and
the time delayt, and that the ‘‘stochastic forcing’’f (k,t)
has the expected correlation properties. Although this
method works well, it is not constructive, in the sense that
one effectively needs to integrate the full KS equation in
order to compute these three point correlations, and eventu-
ally n.

The main motivation of the present paper was to model
the energy transfer between large and small scales in the KS
equation, in order to gain some insight into the mechanisms
responsible for the renormalization of the viscosity. More
precisely, we show that the two and three point correlation
functions mixing both large and small scales can be numeri-
cally computed from the response of a low dimensional dy-
namical system, namely, the KS equation for small values of
L, to an external forcing. Our procedure does not yield a
closed analytic form for the coarse-grained equations, but it
provides a completely explicit recipe free of unknown pa-
rameters, and easily amenable to numerical computation. In
the process of~re!writing this paper, we learned of a similar
paper by C. Chow and T. Hwa@9#, leading to the same result
as ours, but using completely different methods, and, in our
opinion, requiring stronger assumptions about the behavior
of small scales. We will comment on the approach of@9#
throughout the following. We also refer the reader to Refs.
@10–12# for other approaches similar to ours.

Another interesting question, which to the best of our
knowledge has not been addressed in the context of the KS
equation, concerns the behavior of the coarse-grained equa-
tion for the scales close to the arbitrary cutoff separating
small from large scales. One expects that approximations
relying on differences in time scales will break down in the
vicinity of this boundary. This point will be considered in the
context of our particular modeling of the small-scale behav-
ior.

The rest of the paper is organized as follows. In Sec. II,
we describe the main analytic tool of our approach, namely,
the use of an orthogonal wavelet basis, and we study the
structure of the equations generated by projecting the KS
equation onto such a basis. In Sec. III, we explain our model
for the coupling between small and large scales and we de-
scribe and compare the results of three numerical simula-
tions: ~1! of the full KS equation on a ‘‘long’’ domain
L5400; ~2! of eight independent ‘‘short’’ systems
(L5400/8550) forced by the large scales of the full simu-
lation; and~3!, of a closed system of coupled large and in-
dependent small-scale systems. Section IV contains conclud-
ing remarks.

II. WAVELET PROJECTIONS OF THE KS EQUATION

Our approach is based on the use of a particular orthogo-
nal waveletbasis@13#. The construction of this basis relies
on the existence of a functionC(x), which completely de-
fines its elements, such that the infinite set
$C j ,k , j50,1, . . . ,k50,1, . . . ,2j21% forms a basis for the
zero mean, finite energy periodic functions on@0,1#. The
relation betweenC(x) andC j ,k(x) is given by

C j ,k~x!52 j /2 (
n52`

`

C„2 j~x1n!2k…. ~7!

Typically,C(x) is a rapidly~exponentially! decreasing func-
tion @14#, which can effectively be considered as compactly
supported for numerical purposes. In this paper, we use a
fifth degree spline@15# for C(x), although this fact will not
directly enter our reasoning below. Then one can easily see
from relation~7! that

C j ,k~x!52 j /2C~2 j x2k!1O„exp~22 j /S!… ~8!

providedC(x);exp(2uxu/S) asx→`. In physical terms, the
wavelet basis is built of rescaled and translated versions of
theC(x) function so that, for each scalej , we obtain a set of
2 j functions, centered at the points (k10.5)22 j ,
k50,1, . . . ,2j21 @13,15#, and sufficiently rapidly decaying
that their supports are concentrated in intervals of length
;22 j . In the Fourier domain, a wavelet basis corresponds to
a logarithmic partition so that the support of any of the 2j

Fourier transformsĈj ,k(q) is centered around the wave vec-
tor q02

j , whereq0;1 corresponds to the maximum of the
modulus of the Fourier transformĈ(x). The decay in the
wave number is algebraic@15#.

As usual, we represent the solution of the KS equation in
this basis via

u~x,t !5(
a

aa~ t !Ca~x!, ~9!

wherea denotes the multi-index (j ,k). We will also intro-
duce an arbitrary scalej 0 such that$aa

,5aj ,k , j< j 0% repre-
sents the large-scale component of the solution, and
$aa

.5aj ,k , j. j 0% represents the small-scale component~the
role of j 0 is completely analogous to that of the cutoff wave
numberL defined viaL;2 j 0q0). Specific values ofj 0 will
be fixed later.

Several observations suggest that, for the present applica-
tion, wavelets are superior to standard orthogonal bases
~such as Fourier modes!. In particular:~i! due to the expo-
nential decrease in the scales between wavelet ‘‘genera-
tions’’ inherent in the wavelet basisfor equations such as the
KS equation in the regions of the spectrum we are interested
in, the characteristic time scale of all theaj ,k’s is the same
for each fixedj , but differs by an order of magnitude from
that of the neighboringaj11,k scales. An analogous partition
of Fourier modes e2ipkx into shells of the form
k0
n<uku,k0

n11 has been systematically used in RNG calcu-
lations @5,6,16#, but while in the Fourier case there is no
clear gap between time correlations of modes in neighboring
shells, for wavelets, all the coefficients at the same scale
have the same time correlation
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and neighboring scales differ by a factor of 2. This point is
crucial when invoking any kind of multiple time scale tech-
nique, as is the case in the RNG method.~ii ! Due to the
particular structure of the wavelet basis, it will be shown
below that the equations governing the time evolution of the
wavelet coefficientsaa for values of j. j 0 can be decom-
posed into a set of independent replicas of the equations
computed from the wavelet projection of the KS equation for
a smaller value of the parameterL. All the results in this
paper rely strongly on this observation, which we now ex-
plain.

Let us write Eq.~1! in terms of theaa variables

ȧa5 l abab1nabgabag , ~10!

where l ab5*0
1Ca(x)(2L22]xx2L24]xxxx)Cb(x)dx, etc.,

. . . , andsummation over repeated indices is implied. We
introduce the splitting between large (a,) and small (a.)
scales, and rewrite the evolution equation of the small scales
as

ȧa
.5@ l ab

..1d l ab
..~ t !#ab

.1nabg
...ab

.ag
.1 f a

.~ t !, ~11!

where d l ab
..(t)5nabg

..,ag
,1nagb

.,.ag
, is a slowly varying

perturbation of the linear term, and f a
.(t)

5nabg
.,,ab

,ag
,1 l ab

.,ab
, is a slowly varying additive forcing

term.
In this section, we consider the small-scales equation~11!

without the forcing termsd l ab
.. and f a

. , i.e., in isolation
from the large scales. The key observation is that the equa-
tions governing the statistical properties of theaa

. variables
satisfying these unforced equations~11! are identical to those
of the KS equation with parameterL̃5L22( j 011), up to re-
scaling and small corrections.

Namely, if we define the ‘‘boxes’’ Bk ,
k50, . . . ,2j 01121, specified by the sets of indices (j ,k8)
with j> j 011 and uk22( j 011)2k822 j u<22( j 011), we can
decouple theaa

. equations into 2j 011 independent sets of
equations, each one including only variablesa. belonging to
the sameBk box, in a manner that preserves the statistics but
not necessarily the dynamics. The reason for this is easily
seen from inspection of the moment equations associated
with the unforced equation~11! ( f a

.5dab
..50). For ex-

ample, consider the equations of motion for the second mo-
ment

d

dt
^aa

.~ t !ab
.~ t1t!&5^aa

.~ t !l bg
..ag

.~ t1t!&

1^aa
.~ t !nbgd

...ag
.~ t1t!ad

.~ t1t!&,

~12!

where^•& is the time average. Let us denote byua2bu the
distanceuk22 j2k822 j 8u ~modulo 1!, wherea5( j ,k) and
b5( j 8,k8). Using the estimateC(x);exp(2uxu/S) as
x→`, it is straightforward to obtain the following inequali-
ties:

u l abu<C12
u j2 j 8u/2~exp2ua2bu/S1exp2~12ua2bu!/S!

and

unabgu<C22
u j2 j 8u/2~exp2ua2bu/S

1exp2~12ua2bu!/S!2u j2 j 9u/2~exp2ua2gu/S

1exp2~12ua2gu!/S!,

whereC1 andC2 are two constants. We conclude that, for an
appropriate value ofj 0 and for ua2bu>22 j 0, l ab can be
neglected, and that we may make analogous approximations
for nabg . Using the fact that KS is translationally invariant,
we can replace each of the moments in Eq.~12! by the analo-
gous quantity for which all indices belong to the sameBk
box. For instance,

^aa~ t !ab~ t1t!&5^aa2D~ t !ab2D~ t1t!&, ~13!

where (a2D),(b2D)PBk andD is the translation param-
eter. Finally, using the approximate relation~8!, it is easy to
obtain the scaling relations between the coupling coefficients
l ab and nabg for Eq. ~1! with parameter L and L̃
5L22( j 011)/2

l ab~L !5 l a1b1
~ L̃ !@11O~exp22 jmin/S!#,

nabg~L !522~ j 011!/2na1b1g1
~ L̃ !@11O~exp22 jmin/S!#,

~14!

where a5( j ,k),a15( j 1 ,k1), j 15 j2( j 011), k15
22( j 011)k,etc., . . . , and jmin5min( j , j 8, j 9). Using these
relations, one can easily see that the rescaled vari-
ables ãa1

52( j 011)/2aa approximately satisfy the moment

equations~12! arising from Eq.~1! for length parameterL̃.
Assembling all these observations, one gets the relation
claimed above, between the equation governing the statisti-
cal properties of solutions of~1! with parameterL̃ and those
of ~11! with no forcing. However, close equations do not in
general imply close solutions, even in a statistical sense.
Consequently, we do not have anya priori reason to believe
that the statistical properties of the small scales of Eq.~1!
with parameterL will be close to those with parameterL̃,
even if the forcing termsd l.. and f. are small. In the next
section we investigate this question using numerical simula-
tions.

III. COUPLING SMALL AND LARGE SCALES

In this section, we investigate by means of numerical
simulations how the approximations performed in the pre-
ceding section on the unforced small-scale equations~11!,
survive when one includes the slow forcing terms coming
from the interaction with the large scales. Our intuition is
that these approximations can hold provided the amplitude of
the forcing is small and its evolution well separated in time
from the small scales. The same idea, rephrased in the con-
text of the ‘‘integrated’’ KS equation for the function
h(x,t)5*0

xu(x8,t)dx8, constitutes the main ansatz of the
work by Chow and Hwa@9#. As we noted above, the second
condition is automatically satisfied by wavelet decomposi-
tions of the KSE in the region of the spectrum we are inter-
ested in. On the other hand, the amplitude of the forcing is
essentially determined by the value of the cutoffj 0 . As al-
ready observed in previous works, the energy of a typical
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solution of the KS equation is mainly concentrated around
the wavelength 2pA2/L, corresponding to the most unstable
Fourier mode of the equation linearized about the trivial so-
lution. In wavelet terms, this corresponds to the value of
j M such that 22( j M11),2pA2/L,22 j M. Thus we expect
that the above scaling relations between statistical quantities
obtained for two different values ofL will hold even in the
presence of the slow forcing termsd l.. and f., provided
that j 0, j M . In order to illustrate this point, we present in
Fig. 1 the second moments and the probability distribution
functions of the wavelet coefficientsaj ,k for several scales
j and for the two parameter valuesL550 andL5400 ~that
is, j M'5 and j 052), with the appropriate rescaling. The
most energetic scalej56 as well as the second moments of
these distributions are in a rather good agreement. This
means that~i! the scaling relations obtained in Sec. II for the
unforced equations do imply approximate scaling relations
for the statistical properties of the solutions for length values
L andL̃, and~ii ! the forcing is weak enough to preserve the
relations obtained for the unforced equations. Notice how-
ever that the same comparison withj 053 would yield a very
poor agreement. The reason is that the asymptotic dynamics
for the KS equation withL525 is a fixed point~cf. @1#!: this
system is simply too ‘‘short’’ to exhibit sufficiently rich dy-
namicsin isolation ~but see below as well as Sec. IV!. We
conclude that the choice ofj 0 is actually dictated by at least
two conditions:~i! the order of magnitude of the forcing
termsd.. and f., and~ii ! the ~asymptotic! dynamics of the
KS equation for the parameter valueL̃.

Let us now focus on the large-scale equations of motion

ȧa
,5@ l ab

,,1d l ab
,,~ t !#ab

,1nabg
,,,ab

,ag
,1 f a

,~ t !, ~15!

where d l ab
,,(t)5nabg

,,.ag
.1nagb

,.,ag
. and f a

,(t)
5nabg

,..ab
.ag

.1 l ab
,.ab

. . In the standard Fourier-based RNG
procedure@6,16#, the termf a

, gives rise to the correction of
the linear term~renormalization of the viscosity!, whereas
d l ab

,, is either neglected, or shown@16# to correspond to a
cubic nonlinearity only significant for values ofj close to
j 0 . The common procedure used to reach these results is, in
one form or another, the slaving principle. For instance, one
performs a ‘‘short time’’ average of~15! in order to replace
aa

. by ^aa
.& ($a,%) and aa

.ab
. by some function

^aa
.ab

.& ($a,%). Different versions of the RNG procedure in
fact give different analytic expressions for the averaged
terms^aa

.& ($a,%) and ^aa
.ab

.& ($a,%).
Following our initial picture of the small scales as a set of

2 j 011 independent boxes slowly driven by the large-scale
variables, we wish to check its validity with regard to the
statistics of the forcing termsd l ab

,, and f a
, . With this in

mind, we performed three kinds of simulations. Simulation 1
is just the integration of the full KS equation forL5400,
using a pseudospectral code, with Adams-Bashforth time
stepping for the nonlinear term, and a Crank-Nicholson
scheme for the linear term. Simulation 2 is integration in
time of 2j 011(58) independentKS equations withL550,
each forced by the set of large-scale (j< j 0) components
aa

, computed from simulation 1. Namely, for
k50, . . . ,2j 01121, we integrate~using a fourth order
Runge-Kutta method! the equations

ȧa
.5 (

ab
.PBk

l ab
..~ L̃ !ab

.122~ j 011!/2 (
ab

. ,ag
.PBk

nabg
...~ L̃ !ab

.ag
.

1 (
ab

.PBk ,ag
,

@nabg
..,~L !1nagb

.,.~L !#ag
,

1 (
ab

,ag
,
nabg

.,,~L !ab
,ag

, . ~16!

@Here we momentarily drop the implicit summation conven-
tion, and make use of the approximate scaling relation~14!.#
The comparison between simulations 1 and 2 will substanti-
ate the main point of this paper, namely, that the statistics of
couplings between small and large scales in Eq.~1! can be
computed from the interaction with an assembly of low di-
mensional systems. Simulation 3 will be described at the end
of this section.

We considered the statistics of the two@aa(t)ab(t2t)#
and three@aa(t)ab(t)ag(t2t)# point products. These enter
for instance in the energy budget equation (t50)

daa
,2

dt
5 l ab

,,aa
,ab

,1nabg
,,,aa

,ab
,ag

,1d l ab
,,aa

,ab
,1 f a

,aa
,

[ l ab
,,aa

,ab
,1Ta

,,1Ta
,.1Ta

.. , ~17!

and have been studied in the RNG approach to the Navier-
Stokes equations@16,17#. The time average of the transfer
Ta

.. is shown @16,17# to correspond to a negative linear
correction to thel aa^aa

2& term. As can be seen in Fig. 2, the
averagêTa

..& is negative, although very frequently the ‘‘in-

FIG. 1. ~a! Time average ofaa
2 as a function ofj : (n), L5 400,

(s) L550 , divided by 852 j 011. ~b!, ~c!, and~d! present respec-
tively, the pdf’s P(aj ,k50 of the wavelet coefficientsaj ,k50 for
scales: j54, 5, and 6 computed from the KS equation with
L5400 ~solid line!, and j51, 2, and 3 forL550 ~dashed line!,
rescaled by a factor 2A2.
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stantaneous’’ transfer is actually positive. Simulations 1 and
2 seem to agree fairly well for anyj< j 0 . The same remark
is also valid for the other values ofa, as well as for the
‘‘cross’’ transfer termTa

,. . The good agreement between
the two statistics stresses the fact that all the information
needed to compute the interaction between small and large
scales~up to a good approximation! is actually encoded in
the dynamics of the individualBk boxes.

Delayed two-point correlations (t.0) are also of interest.
They enter, for instance, in the analogue of the Zaleski’s
procedure@3,8# written in wavelet basis. Namely, the correc-
tion to the viscositydna and the stochastic forcingFa

. are
defined by the following equation:

ȧa
,5@ l ab

,,1d l ab
,,~ t !#ab

,1nabg
,,,ab

,ag
,1 f a

,~ t !

5~ l ab
,,1dnadab!ab

,1nabg
,,,ab

,ag
,1Fa

, , ~18!

where

Fa
,52dnaaa

,1d l ab
,,~ t !ab

,1 f a
, ~19!

~note that no summation is assumed in thednaaa
, term!. The

closure equation is given by the condition thatFa
,(t) and

ua
,(t2t) are uncorrelated fort.0. This yields the follow-
ing condition:

dna5 lim
t→`

dna~t!

5 lim
t→`

^aa~ t2t!@ f a
,~ t !1d l ab

,,~ t !ab~ t !#&

^aa~ t2t!aa~ t !&
. ~20!

Notice thatdna is a correction of the diagonal matrix ele-
ments ofl ab , and that a more general model for the correc-
tion to the viscosity could be given by

ȧa
,5~ l ab

,,1dnab!ab
,1nabg

,,,ab
,ag

,1F̃a
, . ~21!

Due to the lack of precision in the numerical estimation of
dna ~see Fig. 3!, it is difficult to decide which of the above
models is the best~in the sense that the limit ast→` is
reached faster!, and we will stick to the simplest, namely,
Eq. ~18!. Figure 3 representsdn(t)a computed from the data
obtained from both simulations 1 and 2. One can see that, in
the asymptotic ranget.100, our model reproduces reason-

ably well data obtained from the full simulation, although the
rate of convergence does not seem to be the same for both
simulations.

In Ref. @9#, Chow and Hwa used a rather sophisticated
method to measure the response function of the drift rate,
which, in our terminology, basically gives the correction to
the viscosity. They apply att50 a constant~in time! forcing
to the solution of the integrated KS equation in a periodic
small box. The spatial form of the forcing is critical in order
to obtain the correct value of the response function, and is
thoroughly discussed in their paper. One should notice that
our way of obtaining the correction to the viscosity is analo-
gous to theirs, excepting the fact that the external excitation
of the small periodic boxes is actually given by the real forc-
ing computed from the full simulation. This is probably not
important for the scales much larger than the cutoff scale
j 0 , but probably critical for values ofj; j 0 . Notice also that
our procedure yields unambiguously the spatial profile of the
forcing, simply given by thed l ab

.. and f a
. terms.

It is interesting to note that similar results can be obtained
for the parameter valuej 053, which corresponds toL525
for each boxBk . In terms of dynamical systems, in this case
the asymptotic behavior of the KS equation forL525 is
much simpler than forL550 ~the global attractor is a trimo-
dal steady state: see@1# for details!. Thus, one cannot com-
pare the pdf’s of wavelet coefficients as we did in Fig. 1,
although it should be noted that for such a value ofL, the
transientdynamics of the KS equation can be rather compli-
cated, and pdf’s computed on a time interval where only the
transients are present are actually not very different from
those in Fig. 1. Then, the forcing from the large scales per-
manently keeps the small scales away from the trimodal
fixed point in such a manner that the energy transfer statistics
are those of simulation 1. Hence we conclude that thestatis-
tical properties of theforcedKS equation forL525 are suf-
ficient to describe those of the same equation for larger val-
ues ofL. However, if one tries to increase the value ofj 0 to
4, that is, to reduce toL512.5 for theBk boxes, the dynam-
ics of the resulting short system are insufficiently rich to
reproduce those for larger values ofL ~the solutions quickly
converge to traveling waves with not enough long tran-
sients!. Although this choice still satisfies the condition
j 0, j M;5, the results of simulation 2 are very different from
those of 1.

The conclusion of the two simulations presented so far is
clear: forcing the set of 2j 011 replicas of the KS equation

FIG. 2. ~a! Probability distribution function of the transfer
Ta

.. term for j50, corresponding to the integration of the full KS
equation~solid line!, simulation 2~long-dashed line!, and simula-
tion 3 ~short-dashed line!, for j 052. ~b! Same as in~a! for the
j51 transferTa

.. .

FIG. 3. na(t) computed from the data obtained with both simu-
lations 1 (s) and 2 (n).
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with the right statistics of the large scales induces the correct
energy transfer between small and large scales. We now wish
to investigate the effective equation suggested by our ap-
proach. To do this, we couple the small-scales equations~16!
with the following set of equations for the large scales:

ȧa
,5(

aa
,
l ab

,,~L !aa
,1 (

ab
,ag
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nabg

,,,~L !ab
,ag

,

1 (
ab

,ag
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@nabg
,,.~L !1nagb

,.,~L !#ab
,ag

.

1 (
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.ag
.
nabg

,..~L !ab
.ag

.1(
ab

.
l ab

,.~L !ab
. . ~22!

Numerical simulations using the coupled set of Eqs.~16! and
~22! will be called simulation 3 hereafter. We used the same
time stepping as in simulation 2, and also tried a slightly
different version of simulation 3, where we computed the
evolution of the ‘‘top’’ coefficientaj5 j 011,k of each boxBk

using Eq.~22! instead of Eq.~16!. This version seems to
yield better results than the former, and will actually be used
in the sequel. This improvement can be easily understood, as
the error in the approximate scaling relations~14! decreases
as j increases fromj 011.

The ensemble formed by Eqs. ~16! for
k50,1, . . . ,2j 01121 and~22! constitutes a completely au-
tonomous model for the statistics of the KS equation~neither
fitting parameters other than the cutoff scalej 0 nor external
forcing terms are needed!. The comparison~Fig. 2! of the
undelayed three-point correlation functions with those of
simulations 1 and 2 shows clearly that, as one could expect,
the agreement deteriorates asj approachesj 0 . The pdf’s of
the transfer term are close forj50, deviate for strong~but
rare! values of the transfer forj51, and differ by a factor
;4 for j52 ~not shown in Fig. 2!. Such a disagreement
should be expected: as a matter of fact, the periodization
approximation involved in our model neglects nonlinear cou-
plings of the typenabg

,.. , where the modesCb and Cg

belong to different boxes, anda corresponds to some large-
scale mode. Simulation 2 shows that this approximation is

correct as soon as the small scales are forced with the right
statistics. On the other hand, simulation 3 shows that these
missing interactions can significantly change the statistics of
the large scales close to the cutoff scalej 0 .

IV. CONCLUSION

In this paper, we have used orthogonal wavelet projec-
tions to study models for the transfer of energy between
small and large scales in the 1D periodic Kuramoto-
Sivashinsky equation. We first showed that the structure of
the small-scale equations is such that, when neglecting cou-
plings with the large scales, they can be approximated in a
natural way by a set of 2j 011 replicas of the wavelet projec-
tion of Eq. ~1! for length parameterL̃522( j 011)L. This ap-
proximation is intended only to preserve the statistics of the
solutions, and not the ‘‘instantaneous’’ dynamics.

By means of numerical simulations, we then checked that
forcing this set of 2j 011 independent subsystems with the
large scales computed from the full simulation of Eq.~1!
does actually reasonably reproduce the energy transfer be-
tween large and small scales, provided the phase space of
each of the uncoupled boxesBk is large enough. However,
when the large scales are generated autonomously by a
‘‘closed’’ model coupled to the independent subsystems, the
agreement is satisfactory only for scales separated from the
cutoff scalej 0 .

The statistical picture suggested by our study is that of an
assembly of identical short length subsystems, slowly driven
via interactions with the large scales. A more detailed study
@18# of the dynamics of the KS equation for values of
L;400 actually suggests the need for at least two kinds of
solutions in these subsystems, corresponding, respectively, to
traveling waves and homoclinic cycles, in order to obtain
reasonable tracking of the solutions of the full equation. Spa-
tiotemporal representations of the solutions of theL550 KS
equation strongly suggest that the latter does indeed exhibit
these two types of dynamics.
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